Home
Class 12
MATHS
" Fror "cos^(-1)(sqrt(6)x)+cos^(-1)(3sqr...

" Fror "cos^(-1)(sqrt(6)x)+cos^(-1)(3sqrt(3)x^(2))=(pi)/(2)" को हल कीजिए। "

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

cos{cos^(- 1)((-sqrt(3))/2)+pi/6}

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

The sum of the solutions of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3pi)/2 is

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is