Home
Class 12
MATHS
If Sn=[1/(1+sqrt(n))+1/(2+sqrt(2n))+.......

If `S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))]` then `(lim)_(n ->oo)S_n` is equal to (A) `log 2` (B) `log4` (C) `log8` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

S_(n)=[(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+...+(1)/(n+sqrt(n^(2)))] then (lim_(n rarr oo)S_(n) is equal to (A)log2(B)log4 (C) log 8 (D) none of these

IfS_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)_(n rarr oo)S_n is equal to (a)log 2 (b) log4 (c)log 8 (d) none of these

If S_n=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))++1/(sqrt(3n^2+2n-1)),n in N , then ("lim")_(nvecoo)S_n is equal to pi/2 (b) 2 (c) 1 (d) pi/6

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

If S_(n)={(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+(1)/(3+sqrt(3n))+....+(1)/(n+sqrt(n^(2)))} then {:(" "Lt),(n rarr oo):} S_(n)=

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]