Home
Class 11
MATHS
Locus of z if arg[z - (1 + i)] = {(3pi)...

Locus of `z` if `arg[z - (1 + i)] = {(3pi)/4` when `|z|le|z-2| and (-pi)/4` when `|z| > |z-4|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of z if arg[z-(1+i)] = {:{(3pi//4 when |z| lt = |z-2|), (-pi//4 when |z|> |z-4|)}:} is straight lines passing through (2, 0) straight lines passing through (2, 0) (1, 1) a line segment a set of two rays

Find the locus of z if arg ((z-1)/(z+1))= pi/4

Find the locus of z if arg ((z-1)/(z+1))= pi/4

Trace the locus of z if arg(z+i)=(-pi)/(4)

If |z|=2 and arg (z)=pi/4 , find z .

The locus of z such that arg[(1-2i)z-2+5i]= (pi)/(4) is a

If |z|=2 and arg(z)=(pi)/(4), find z