Home
Class 12
MATHS
Prove that:tan^(-1)(1/5)+tan^(-1)(1/7)+t...

Prove that:`tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4`

Text Solution

AI Generated Solution

To prove that \( \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4} \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] provided that \( xy < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

prove that tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3)=pi

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .