Home
Class 8
MATHS
" Les."y^(2)-xy(1-x)-x^(3)...

" Les."y^(2)-xy(1-x)-x^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre k lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

If |x|<1 and |y|<1, find the sum of infinity of the following series: (x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+xy^(2)+y^(3))+

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

The factors of x^(3)-1+y^(3)+3xy are (a) (x-1+y)(x^(2)+1+y^(2)+x+y-xy)( b) (x+y+1)(x^(2)+y^(2)+1-xy-x-y)( c) (x-1+y)(x^(2)-1-y^(2)+x+y+xy)(d)3(x+y-1)(x^(2)+y^(2)-1)

Q. 11 The solution of (dy)/(dx)=(2x-y+3)/(x+2y+4) is y^(2)-x^(2)+xy+4y-3x+1=C x^(2)-y^(2)+xy+4y+3x-1=C y^(2)-x^(2)-xy-4y+3x-1=C y^(2)-x^(2)+xy+4y-3x-1=C