Home
Class 11
MATHS
((sin^m x)/(sin^n x))^(m+n)*((sin^n x)/(...

`((sin^m x)/(sin^n x))^(m+n)*((sin^n x)/(sin^qx))^(n+q)((sin^qx)/(sin^m x))^(q+m)`

Answer

Step by step text solution for ((sin^m x)/(sin^n x))^(m+n)*((sin^n x)/(sin^qx))^(n+q)((sin^qx)/(sin^m x))^(q+m) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If quad ((sin^(m)x)/(sin^(n)x))^(m+n)((sin^(n)x)/(sin^(p)x))^(n+p)((sin^(p)x)/(sin^(m)x))^(p+) then f(x) is equal to

sin^(m)x.cos^(n)x

Knowledge Check

  • If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

    A
    `(pi)/(2)`
    B
    `(pi)/(4)`
    C
    `(pi)/(2n)`
    D
    `(pi)/(4n)`
  • Comprehension 1 Let I_(n,m)=intsin^(n)xcos^(m)x.dx . Then we can relate I_(n,m) with each of the following i) I_(n-2),m , ii) I_(n+2),m , iii) I_(n,m-2) iv) I_(n,m-2) , v) I_(n-2,m+2) , vi) I_(n+2,m-2) Suppose we want to establish a relation between I_(n,m) and I_(n,m-2) , then we set P(x)=sin^(n+1)xcos^(m-1)x ................(1) In I_(n,m) and I_(n,m-2) the exponent of cosx is m and m-2+1=m-1 . Now choose the exponent m-1 of cosx in P(x). Similarly choose hte exponent of sinx for P(x). Now, differentiating both sides of (1), we get P^(')(x) = (n+1)sin^(n)xcos^(m)X-(m-1)sin^(n+2)Xcos^(m-2)X =(n+1)sin^(n)Xcos^(m)X-(m-1)sin^(n)x(1-cos^(2)x)cos^(m-2)X =(n+1)sin^(n)X cos^(m)X-(m-1)sin^(n)Xcos^(m-2)X+(m-1)sin^(n)Xcos^(m)X =(n+m)sin^(n)Xcos^(m)X-(m-1)sin^(n)Xcos^(m-2)X Now, integrating both sides, we get sin^(n+1)cos^(m-1)x=(n+m)I_(n,m)-(m-1)I_(n,m+2) Similarly, we can establish the other relations. The relation between I_(4,2) and I_(2,2) is

    A
    `I_(4,2)=1/6 (-sin^(3)xcos^(3)x+3I_(2,2))`
    B
    `I_(4,2)=1/6(sin^(3)x cos^(3)x-3I_(2,2))`
    C
    `I_(4,2)=1/6(sin^(3)xcos^(3)x-3I_(2,2))`
    D
    `I_(4,2)=1/6(sin^(3)xcos^(3)x-3I_(2,2))`
  • Similar Questions

    Explore conceptually related problems

    sin x+sin3x+...+sin(2n-1)x=(sin^(2)nx)/(sin x)

    sin x+sin3x+.......sin(2n-1)x=(sin^(2)nx)/(sin x)

    m,n,in1^(+), then lim_(x rarr0)(sin x^(n))/((sin x)^(m)) equals

    If int sin ^(2) x cos ^(4) xdx = ( p )/(32) [ (sin 6x )/( m ) = (sin 4x )/( n ) + ( sin 2x)/( k ) + qx] + c then pm + knq = _____.

    If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

    |sin nx|<=n|sin x|,n in N