Home
Class 12
MATHS
[" If "A=[[a,b],[c,d]]" and "I=[[1,0],[1...

[" If "A=[[a,b],[c,d]]" and "I=[[1,0],[1,0]]],[" Show that "A^(2)-Ca+dDA=6c-adI]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

If A={:[(a,b),(c,d)] and I={:[(1,0),(0,1)] Show that, A^(2)-(a+d)A=(bc-ad)I .

If A=[[a,b],[c,d]] and I=[[1,0],[0,1]] then A^2-(a+d)A-(bc-ad)I=

If A=((a, b), (c, d)) and I=((1, 0), (0, 1)) show that A^(2)-(a+d)A=(bc-ad)I_(2).

If A=[[0,1],[1,0]],B=[[0,-i],[i,0]] and C=[[i,0],[0,-i]] , show that A^2=B^2=-C^2=I_2 and AB=-BA,AC=-CA and BC=-CB .

If A=[[0,1],[1,0]],B=[[0,-i],[i,0]] and C=[[i,0],[0,-i]] , show that A^2=B^2=-C^2=I_2 and AB=-BA,AC=-CA and BC=-CB .

If A=[[1, 0],[ 0, 1]] , B=[[1,0],[0,-1]] and C=[[0, 1],[ 1, 0]] , then show that A^2=B^2=C^2=I_2 .

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

A = [(1, 0), (0, 1)], B = [(1, 0), (0, -1)] and C = [(0, 1), (1, 0)] , then show that A^(2) = B^(2) = C^(2) = I^(2)