Home
Class 12
MATHS
If A=[{:(1,1),(0,1):}], prove that A=[{:...

If `A=[{:(1,1),(0,1):}]`, prove that `A=[{:(1,n),(0,1):}]` for all `n inN.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] for every positive integer n .

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.

If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}] , then the inverse of [{:(1, n), (0,1):}] is

If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}] , then the inverse of [{:(1, n), (0,1):}] is

A=[{:(a,b),(0,1):}],ane1 then prove that A^(n)=[{:(a^(n),(b(a^(n)-1))/(a-1)),(0," "1):}], n inN .

If A={:[(1,2),(0,1)]:} show, by mathematical induction, that A^(n)={:[(1,2n),(0,1)]:} for all n in N.