Home
Class 12
MATHS
The value of the integral overset(log5)...

The value of the integral `overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : overset(log5)underset(0)int (e^xsqrt(e^x-1))/(e^x + 3 ) dx

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

The value of the integral overset(e )underset(1//e)int |logx|dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral