Home
Class 10
MATHS
(1)/(x)+(1)/(y)=12;(3)/(x)-(2)/(y)=1...

(1)/(x)+(1)/(y)=12;(3)/(x)-(2)/(y)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (1)/(x)=12 , (3)/(x)-(2)/(y)=1 .

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0

If x+y+z=12 and x^(2)+y^(2)+z^(2)=96 and (1)/(x)+(1)/(y)+(1)/(z)=36 then the value x^(3)+y^(3)+z^(3) divisible by prime number is

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(x)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If A=[[0,1,3],[1,2,x],[2,3,1]] and A^(-1)=[[(1)/(2),-4,(5)/(2)],[-(1)/(2),3,-(3)/(2)],[(1)/(2),y,(1)/(2)]] . Find x,y

If 2^(x)=3^(y)=12^(z) show that (1)/(z)=(1)/(y)+(2)/(x)

"Find the value of "(x+y)," if "(x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)