Home
Class 12
MATHS
If intsqrt(cos e cx+1)dx=kfog(x)+c ,w h...

If `intsqrt(cos e cx+1)dx=kfog(x)+c ,w h e r ek` is a real constant, then `k=-2,f(x)=cot^(-1)x ,g(x)=sqrt(cos e cx-1)` `k=-2,f(x)=tan^(-1)x ,g(x)=sqrt(cos e cx-1)` `k=2,f(x)=tan^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))` `k=2,f(x)=cot^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If intsqrt(cos e cx+1)dx=kfog(x)+c ,w h e r ek is a real constant, then (a). k=-2,f(x)=cot^(-1)x ,g(x)=sqrt(cos e cx-1) (b) k=-2,f(x)=tan^(-1)x ,g(x)=sqrt(cos e cx-1) (c) k=2,f(x)=tan^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1)) (d) k=2,f(x)=cot^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))

If intsqrt(cos e cx+1)dx=kfog(x)+c ,w h e r ek is a real constant, then (a) k=-2,f(x)=cot^(-1)x ,g(x)=sqrt(cos e cx-1) (b) k=-2,f(x)=tan^(-1)x ,g(x)=sqrt(cos e cx-1) (c) k=2,f(x)=tan^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1)) (d) k=2,f(x)=cot^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))

Evaluate: intsqrt(cos e cx-1) dx

Solve for x : 2tan^(-1)(cosx)=tan^(-1)(2cos e cx)

Find f'(x), if f(x)= tan^(-1) ""sqrt((1-cos2x)/(1+cos2x))

f(x)=sqrt(sin(cos x))+ln(-2cos^(2)x+3cos x+1)+e^(cos^(-1))((2sin x+1)/(2sqrt(2sin x)))

If int (xe^x)/(sqrt(1 + e^x)) dx = f(x) sqrt(1 + e^x) - 2 In g(x) + c , then

f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x)))) then

intsqrt(e^x-1)dx is equal to (a) 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c (b) sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c (c) sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c (d) 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c

intsqrt(e^x-1)dxi se q u a lto 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c