Home
Class 11
MATHS
" 8."f(x)=cos^(-1)sqrt(log([x])(|x|)/(x)...

" 8."f(x)=cos^(-1)sqrt(log_([x])(|x|)/(x))" ,where "[*]" denotes the greatest integer function "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)sqrt(log_([x])((|x|)/(x))) where [.1 denotes the greatest integer function

f(x)=cos^(-1)sqrt(log_([x])""abs(x)/x) , where [*] denotes the greatest integer.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

Find the domain and range of the following function: f(x)=cos^(-1)sqrt(log_([x])(|x|)/x) , whre [.] denotes the greatest integer function.

The domain and range of f(x) = cos^(-1)sqrt(log_([x])(|x|/(x))) where[.] denote the greatest integer function are respectively

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.