Home
Class 10
MATHS
[hline(14),tan A=n*tan B],[,sin A=m sin1...

[hline(14),tan A=n*tan B],[,sin A=m sin13],[," Prove that "cos^(2)A=((m^(2)-1)/(n^(2)-1))],[hline]

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If a cos A+b sin A=m and a sin A-b cos A=n prove that a^(2)+b^(2)=m^(2)+n^(2)

Sin A=m sin B,show that , tan((A-B)/2)=(m-1)/(m+1)tan((A+B)/2)

If tan A=1//2, tan B=1//3 , then prove that cos 2A=sin2B .

If tan A=1//2, tan B=1//3 , then prove that cos 2A=sin2B .