Home
Class 14
MATHS
(sin^(4)alpha)/(sin^(2)beta)+(cos^(4)alp...

(sin^(4)alpha)/(sin^(2)beta)+(cos^(4)alpha)/(cos^(2)beta)=1" find "sin^(6)beta sin^(4)alpha+(cos^(6)beta)/(cos^(4)theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=?

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1, then provet that (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=1.

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then the value of (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha) is

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)beta)/(sin^(2)alpha)=1 , then (cos^(6)beta)/(cos^(4)alpha)+(sin^(6)alpha)/(sin^(4)beta)= ?

If (cos^(4)alpha)/(cos^(2) beta) + (sin^(4)alpha)/(sin^(2)beta) = 1, prove that (cos^(4)beta)/(cos^(2) alpha) + (sin^(4)beta)/(sin^(2)alpha)= 1

If (cos^(4)alpha)/(cos^(2) beta) + (sin^(4)alpha)/(sin^(2)beta) = 1, prove that sin^(4)alpha + sin^(4) beta = 2 sin^(2) alpha sin^(2) beta

If (cos^4 alpha)/(cos^2beta)+(sin^4alpha)/(sin^2beta)=1 ,then prove that (cos^4beta)/(cos^2alpha)+(sin^4beta)/(sin^2alpha)=1

If (cos^4 alpha)/(cos^2 beta)+ (sin^4 alpha)/(sin^2 beta) =1 , prove that : (cos^4 beta)/(cos^2 alpha)+ (sin^4 beta)/ (sin^2 alpha) =1 .

If (cos^4 alpha)/(cos^2beta)+(sin^4alpha)/(sin^2beta)=1 ,then prove that sin^4alpha+sin^4beta=2sin^2alphasin^2beta .

If (cos^4 alpha)/(cos^2 beta)+ (sin^4 alpha)/(sin^2 beta) =1 , prove that : sin^4 alpha+ sin^4 beta= 2 sin^2 alpha sin^2 beta .