Home
Class 12
MATHS
Find the value of the following: tan^(-1...

Find the value of the following: `tan^(-1)(tan((7pi)/6))`

Text Solution

AI Generated Solution

To find the value of \( \tan^{-1}(\tan(\frac{7\pi}{6})) \), we will follow these steps: ### Step 1: Understanding the Function We know that the function \( \tan^{-1}(x) \) (or arctan) gives the angle whose tangent is \( x \). The output of \( \tan^{-1}(x) \) is restricted to the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). ### Step 2: Simplifying the Argument We need to simplify \( \tan(\frac{7\pi}{6}) \). The angle \( \frac{7\pi}{6} \) can be rewritten in terms of a reference angle: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

2tan^(-1)(tan((7pi)/6))

Find the value the following : tan^(-1) (tan. (7pi)/6)

tan^(-1)(tan^(5 pi/6))

tan^(-1)("tan"(7pi)/(5))

Find the value of the following cot^(-1) (tan (-6))

tan^(-1)(tan((6 pi)/(7)))

tan^(-1){tan(-(7 pi)/(8))}

tan^-1 (tan ((7π)/6))

tan^(-1)(tan((-33 pi)/(7)))

Find the values of the following: tan105^(@) ii.(tan(13 pi))/(12)