Home
Class 11
MATHS
([1,1,9,9^(2)],[1,b,b^(2)],[1,c,c^(2)])=...

([1,1,9,9^(2)],[1,b,b^(2)],[1,c,c^(2)])=(9-b)(b-c)(c-9)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If {[([3,1,2],[8,9,5],[1,1,3])([1,3,3],[3,2,7],[3,7,9])([3,8,1],[1,9,1],[2,5,3])])}^(2)=([a_(1),a_(2),a_(3)],[b_(1),b_(2),b_(3)],[c_(1),c_(2),c_(3)]) then the value of |a_(2)-b_(1)|+|a_(3)-c_(1)|+|b_(3)-c_(2)| is

If a+b+c=1,a^(2)+b^(2)+c^(2)=9 and a^(3)+b^(3)+c^(3)=1, then (1)/(a)+(1)/(b)+(1)/(c) is (i)0 (ii) -1(iii)1(iv)3

If 2a+b+3c=1 and a>0,b>0,c>0 then the greatest value of a^(4)b^(2)c^(2) is (1)/(9.4^(8)) b.(1)/(9.4^(5)) c.(1)/(9^(4).4^(8)) d.(1)/(9^(4).4)

When simplified (-(1)/(27))^(-(2)/(3)) is 9(b)-9(c)(1)/(9)(d)-(1)/(9)

[{(-1/3)^2}^(-2)]^(-1) = (a) 1/(81) (b) 1/9 (c) -1/(81) (d) -1/9