Home
Class 12
MATHS
If f(x)=int(x^2)^(x^3) lntdt , (xgt0) an...

If `f(x)=int_(x^2)^(x^3) lntdt , (xgt0)` and `f'(4/9)=f'(k)` then values of k can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt , where xgt0 , find the value of f(x)+f((1)/(x)) and hence show that, f(e)+f((1)/(e))=(1)/(2) .

If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7)^2)dx, (xge0), f(0)=0 and f(1)=1/K , then the value of K is _______ .

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is