Home
Class 12
MATHS
If A+B+C =pi, show that |["sin"^(2)A,...

If A+B+C =`pi`, show that
`|["sin"^(2)A, "sin A cos A", "cos"^(2)A],["sin"^(2) B, "sin B cos B", "cos"^(2)B],["sin"^(2)C, "sin C cos C", "cos"^(2)C]| =-"sin (A-B)"sin"(B-C)"sin"(C-A)"`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=180^(@), show that sin2A-sin2B-sin2C=-4sin A cos B cos C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C