Home
Class 12
MATHS
Prove that:2sin^(-1)(3/5)=tan^(-1)((24)...

Prove that:`2sin^(-1)(3/5)=tan^(-1)((24)/7)`

Text Solution

AI Generated Solution

To prove that \( 2 \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{24}{7}\right) \), we can follow these steps: ### Step 1: Let \( \theta = \sin^{-1}\left(\frac{3}{5}\right) \) This implies that \( \sin(\theta) = \frac{3}{5} \). ### Step 2: Find \( \cos(\theta) \) Using the Pythagorean identity: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)

sin^(-1)(3/5)+tan^(-1)(1/7)=

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

Prove that 2sin^(-1)[(3)/(5)]-tan^(-1)[(17)/(31)]=(pi)/(4)

Prove that sin ^(-1).(3)/(5) = tan ^(-1) .(3)/(4) .

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)