Home
Class 11
MATHS
" The value of "lim(n rarr oo)(1.2+2.3+3...

" The value of "lim_(n rarr oo)(1.2+2.3+3.4+...+n.(n+1))/(n^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

lim_ (n rarr oo) (1 + 3 + 6 ++ (1) / (2) n (n + 1)) / (n ^ (3))

lim_ (n rarr oo) ((n-1) (n-2) (n-3)) / (n ^ (3))