Home
Class 12
MATHS
[" 1A satisfies the equation "x^(3)-5x^(...

[" 1A satisfies the equation "x^(3)-5x^(2)+4x+lambda=0," then "A^(-1)" exists if "],[[lambda!=1," (b) "lambda!=2," (c) "lambda!=-1," (d) "lambda!=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

The equation x^(2)-6x+8+lambda(x^(2)-4x+3)=0,AA lambda in R-{-1} has

The equation (x^(2)-6x+8)+lambda (x^(2)-4x+3)=0, lambda in R has

The number of real roots of the equation 4x^(3)-x^(2)+lambda^(2)x-mu=0 , mu in R, lambda > 1 is

Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]] then A^(-1) exists if (A) x!=0 (B) lambda!=0 (C) 3x+1!=0 , lambda!=0 (D) x!=0 , lambda!=0

Roots of the equation (x^(2)-4x+3)+lambda(x^(2)-6x+8)=0lambda in R will be

The number of solutions of the equation x^(3)+2x^(2)+5x+2cos x=0 in [0,2 pi] is lambda then (lambda)/(4)=