Home
Class 9
MATHS
" s.prove that "|[a^(2)+2a,2a+1,1],[2a+1...

" s.prove that "|[a^(2)+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|-(a-1)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants,prove that det[[a^(2)+2a,2a+1,12a+1,a+2,13,3,1]]=(a-1)^(3)

Prove that det[[a^(2)+2a,2a+1,12a+1,a+2,13,3,1]]=(a-1)^(3)

Using the proprties of determinants in Exercise 7 to 9, prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

Using properties of determinants, prove that |[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2

Prove that, |[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,