Home
Class 12
MATHS
Find the value of the following: cos^(-1...

Find the value of the following: `cos^(-1)(cos((13pi)/6))`

Text Solution

AI Generated Solution

To find the value of \( \cos^{-1}(\cos(13\pi/6)) \), we will follow these steps: ### Step 1: Simplify the angle First, we need to simplify the angle \( \frac{13\pi}{6} \). Since cosine is periodic with a period of \( 2\pi \), we can subtract \( 2\pi \) from \( \frac{13\pi}{6} \) to bring it within the standard range of \( [0, 2\pi) \). \[ \frac{13\pi}{6} - 2\pi = \frac{13\pi}{6} - \frac{12\pi}{6} = \frac{\pi}{6} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the following cos^(-1) (cos 10)

Find the value the following : cos^(-1) (cos . (13pi)/6)

Evaluate the following: cos^(-1)((cos(7 pi))/(6))

Find the principal values of the following cos^(-1) (cos. (13pi)/6)

Evaluate each of the following: cos^(-1)((cos(13 pi))/(6))( ii) cos^(-1)(cos3)( iii) cos^(-1)(cos4)

Evaluate each of the following cos^(-1) (cos""(5pi)/(4))

Evaluate each of the following: cos^(-1){cos(-(pi)/(4))}( ii) cos^(-1)((cos(5 pi))/(4)) (iii) cos^(-1)((cos(4 pi))/(3))

Find the values of the cos^(-1)[cos((4 pi)/(3))]

Find the value of the :cos^(2)((pi)/(6))+cos ec(5(pi)/(6))+3tan^(2)((pi)/(6))

cos ^ (- 1) ((cos (13 pi)) / (6))