Home
Class 12
MATHS
[x^(2)+y^(2)=t+(1)/(t)],[x^(2)+y^(4)=e^(...

[x^(2)+y^(2)=t+(1)/(t)],[x^(2)+y^(4)=e^(2)+(1)/(t^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)