Home
Class 12
MATHS
Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=...

Prove that `2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2)) .

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .