Home
Class 12
MATHS
f(x)={[x sin(1)/(x),,x!=0],[0,x=0]" then...

f(x)={[x sin(1)/(x),,x!=0],[0,x=0]" then at "x=0," fros "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sin(x^(2)))/(x),x!=0,f(x)=0,x=0 then at x=0,f(x) is

g(x)=xf(x) , where f(x)=x"sin"(1)/(x),x!=0=0,x=0 . At x=0 :

Prove that f(x)={x sin((1)/(x)),x!=0,0,x=0 is not differentiable at x=0

If f(x)=x sin((1)/(x)),x!=0 and f(x)=0,x=0 then show that f'(0) does not exist

f(x)={(x^2 sin (1/x), xne0 ),(0, x=0):} at x=0

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is

Show that the function f(x) given by f(x)={:{(x" sin "(1)/(x)", if "x!=0),(0" , if "x=0):} is continuous at x =0

Let f(x)={(x^(p)"sin"1/x,x!=0),(0,x=0):} then f(x) is continuous but not differentiable at x=0 if

Examine the derivability of: f(x) = {:{(x^2sin(1/x),xne0),(0,x=0):} at x =0