Home
Class 8
MATHS
tan^(2)phi+cot^(2)phi+2=sec^(2)phi*cosec...

tan^(2)phi+cot^(2)phi+2=sec^(2)phi*cosec^(2)phi

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^2 phi+ cot^2 phi- sec^2 phi cosec^2 phi is equal to:

(tan^(2)phi)/(1+tan^(2)phi)+(cosec ^(2)phi)/(sec^(2)phi+cosec^(2)phi)=1

The equation tan^(2)phi+tan^(6)phi=tan^(3)phi*sec^(2)phi is

If phi_(1) and phi_(2) be the apparent angles of dip observed in two vertical planes at right angles to each other , then show that the true angle of dip phi is given by cot^(2) phi = cot^(2) phi_(1) + cot^(2) phi_(2) .

If phi_(1) and phi_(2) be the apparent angles of dip observed in two vertical planes at right angles to each other , then show that the true angle of dip phi is given by cot^(2) phi = cot^(2) phi_(1) + cot^(2) phi_(2) .

If : cos^(2)theta-sin^(2)theta=tan^(2)phi, "then" : cos^(2)phi-sin^(2)phi=

If 1-3(cot^(2)phi-cos^(2)phi)=sin^(2)phi,0^(@)ltthetalt90^(@) , then what is the value of (2sinphi+cosphi) ?