Home
Class 12
MATHS
Let f(x) be a polynomial satisfying lim(...

Let `f(x)` be a polynomial satisfying `lim_(x->oo)(x^2f(x))/(2x^5+3)=6`, also `f(1)=3,f(3)=7` and `f(5)=11`, then find the value of `((f(6)+5f(4))/29)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Let f (x) be a polynomial satisfying lim _(x to oo) (x ^(4) f (x))/( x ^(8) +1)=3 f (2) =5, f(3) =10, f (-1)=2, f (-6)=37 The value of lim _(x to -6) (f (x) -x ^(2) -1)/(3 (x+6)) equals to: