Home
Class 12
MATHS
If y=ae^(mx)+be^(-mx) then (d^2y)/(dx...

If `y=ae^(mx)+be^(-mx)` then `(d^2y)/(dx^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y = ae^(mx) + be^(-mx),"then"(d^(2)y)/(dx^(2))-m^(2)y = .........................

If y=Ae^(mx)+Be^(nx) ,then (d^(2)y)/(dx^(2)) is equal to , (a) (m+n)(dy)/(dx)+mny , (b) (m+n)(dy)/(dx)-mny , (c) -(m+n)(dy)/(dx)+mny , (d) None of these

If y=ae^(mx)+be^(-mx)," then "y_(2)=

Find the second order derivative of the following functions If y = ae^(mx) + be^(-mx) , prove that (d^2y)/(dx^2) - m^2y = 0

If y=ae^(mx)+be^(nx) , show that (d^2y)/(dx^2)-(m+n)dy/dx+mny=0