Home
Class 12
MATHS
If x satisfies the equation log125 x^3 –...

If x satisfies the equation `log_125 x^3 – 3 sqrt(log_25 x^2) =4`, then find the number of digits in x.`[Use: log 2 = 0.3010]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

Let x satisfies the equation log_(3)(log_(9)x)=log_(9)(log_(3)x) then the product of the digits in x is

Values of x satisfying the equation abs(log_sqrt3 x-2)-abs(log_3 x-2)=2 are

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0.4771)

If 2^(x).3^(2x)=100 , then the value of x is (log2=0.3010,log3=0.4771)