Home
Class 11
MATHS
Prove that the curve (x^2)/(a^2)+(y^2)/(...

Prove that the curve `(x^2)/(a^2)+(y^2)/(b^2)=1(x^2)/(a^(12))+(y^2)/(b^2)=1` intersect orthogonally if `a^2-a^2=b^2-b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

Show tht the curves x^2/(a^2+k_1)+y^2/(b^2+k_1)=1 and x^2/(a^2+k_2)+y^2/(b^2+k_2)=1 intersect

If the curves (x^2)/(a^2)+(y^2)/(b^2)=1 and (x^2)/(l^2)-(y^2)/(m^2)=1 cut each other orthogonally then.....

Find the condition for the curves (X^2)/(a^2) - (y^2)/(b^2) = 1 and xy = c^2 to intersect orthogonally.

Prove that the curve 2x^(2)+3y^(2)=1 and x^(2)-y^(2)=(1)/(12) intersect orthogonally.

If curves (x^2)/(a^2)-(y^2)/(b^2)=1 and xy= c^2 intersect othrogonally , then

Find the condition for the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy =c^(2) to interest orthogonally.

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(l^(2))-(y^(2))/(m^(2))=1 cut each other orthogonally then....

Find the condition for the curves (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1 and xy = c^(2) to intersect orthogonally.