Home
Class 12
MATHS
" 17.If "f(x)=|[ax,a,-1],[ax,a]|," using...

" 17.If "f(x)=|[ax,a,-1],[ax,a]|," using properties of determinants find the "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of determinants find the value of f(2x) − f(x).

If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of determinants find the value of f(2x) − f(x).

If f(x)=|a-10axa-1ax^(2)axa|, using properties of determinants,find the value of f(2x)-f(x)

If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of determinants, find the value of f(2x)-f(x) .

If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)| , using properties of determinants, find the value of f(2x)-f(x)

If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of determinants, find the value of f(2x)-f(x)

If f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, then f(2x)-f(x) equals

Evaluation of determinants using determinant properties