Home
Class 12
MATHS
Thenumber of distinct terms in the expan...

Thenumber of distinct terms in the expansion of `(x_1+x_2+……..+x_p)^n is (A) `^(n+p)C_n` (B) `n+p+1` (C) `n+1` (D) `^(n+p-1)C_(p-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Thenumber of distinct terms in the expansion of (x_1+x_2+……..+x_p)^n is (A) .^(n+p)C_n (B) .^n C_1 (C) n+1 (D) .^(n+p-1)C_(p-1)

The number of distinct terms in the expansion of is (x^(3)+(1)/(x^(3))+1)^(n) is (a) 2n (b) 3n (c) 2n+1 (d) 3n+1

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

If ""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q = 1 , then sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) =

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If the coefficient of pth term in the expansion of (1+x)^n is p and the coefficient of (p+1)th term is q then n=

If the coefficient of pth,(p+1)thand(p+2)th terms in the expansion of (1+x)^(n) are in A.P

If the coefficient of pth,(p+1)thand(p+2)th terms in the expansion of (1+x)^(n) are in A.P