Home
Class 12
MATHS
[" EXAMPLE "2" Statement-1: The relation...

[" EXAMPLE "2" Statement-1: The relation Ron the set "N times N" defined "rArr],[" by "(a,b)R(c,d)hArr a+d=b+c" for all "a,b,c,d in N" is an "],[" equivalence relation."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The union of two equivalence relations is an equivalence relation.

Prove that the relation R on the set N xx N defined by (a,b)R(c,d)a+d=b+c for all (a,b),(c,d)in N xx N is an equivalence relation.Also,find the equivalence classes [(2, 3)] and [(1,3)].

Prove that the relation R on the set NxxN defined by (a ,\ b)R\ (c ,\ d) a+d=b+c for all (a ,\ b),\ (c ,\ d) in NxxN is an equivalence relation. Also, find the equivalence classes [(2, 3)] and [(1, 3)].

Prove that the relation R on the set NxxN defined by (a ,\ b)R\ (c ,\ d) iff a+d=b+c for all (a ,\ b),\ (c ,\ d) in NxxN is an equivalence relation. Also, find the equivalence classes [(2, 3)] and [(1, 3)].

Let r be relation over the set N xx N and it is defined by (a,b) r (c,d) rArr a+d = b+c . Then r is