Home
Class 12
MATHS
lim(n->oo)sum(k=0)^n(1/(^nCk))...

`lim_(n->oo)sum_(k=0)^n(1/(^nC_k))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)