Home
Class 12
MATHS
Write the following function in the simp...

Write the following function in the simplest form: `tan^(-1)((sqrt(1+x^2)-1)/x ), x!=0`

Text Solution

AI Generated Solution

To simplify the function \( \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) where \( x \neq 0 \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, the expression becomes: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the following function in the simplest form: tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

Write the following function in the simplest form: tan^(-1)sqrt((1-cos x)/(1+cos x))

Write the following functions in the simplest form: tan^(-1){(x)/(sqrt(a^(2)-x^(2)))}

Write the following function in the simplest form: (tan^(-1)x)/(sqrt(a^(2)-x^(2))),|x|

Write the following functions in the simplest form: (i) tan^(-1){x/(sqrt(a^2-x^2))},\ -a< x < a (ii) tan^(-1){sqrt((a-x)/(a+x))},\ -a< x < a

Write each of the following in the simplest form: tan^(-1){(sqrt(1+x^(2))+1)/(x)},x!=0 (ii) *tan^(^^)(-1)sqrt((a-x)/(a+x)),1backslash-a

Write the following functions in the simplest form: sin^(-1){(x)/(sqrt(x^(2)+a^(2)))}( ii) cos^(-1){(x)/(sqrt(x^(2)+a^(2)))}

Write into the simplest form: cot^(-1)(sqrt(1+x^(2))+x)

Write the following function in the simplest form: tan^(-1)((cos x-sin x)/(cos x+sin x)),x

Write the following functions in the simplest from : sin^(-1)(x^(2)sqrt(1-x^(2))+xsqrt(1-x^(4)))