Home
Class 11
MATHS
" 9.Show that "2^(sin x)+2^(cos x)>=2^(1...

" 9.Show that "2^(sin x)+2^(cos x)>=2^(1-sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

Show that : int sqrt (1+ cos x ) dx = 2 sqrt(2) sin. x/2 + c

If a cos x-b sin x=c show that a sin x+b cos x=sqrt(a^(2)+b^(2)+c^(2))

Show that : int (cos x dx )/(sqrt(1+ sin x )) = 2 ( sin . x/2 + cos. x/2 ) + c

Show that cos 2 x=cos ^(2) x-sin ^(2) x=2 cos ^(2) x-1=1-2 sin ^(2) x=(1-tan ^(2) x)/(1+tan ^(2) x)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)