Home
Class 11
MATHS
Prove that in a A B C ,sin^2A+sin^2B+si...

Prove that in a ` A B C ,sin^2A+sin^2B+sin^2C<=9/4dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A + B + C =180^@ , prove that : sin^2 A- sin^2 B+ sin^2 C=2 sin A cos B sinC .

If A + B + C =pi/2 , prove that : sin^2 A +sin^2 B+sin^2 C= 1-2 sin A sin B sin C .

If A+B+C=(pi)/(2) , then prove that sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C .

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B-sin^2 C=2 sin A sin B cos C .

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)