Home
Class 12
MATHS
lf sum of maximum and minimum value of y...

lf sum of maximum and minimum value of `y = log_2(x^4+x^2+1) - log_2 (x^4 +x^3 +2x^2+x+1)` can be expressed in form `((log_2 m)-n)`, where m and n are coprime then compute `(m+n)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in[1,16],M and m denotes maximum and minimum values of f(x)=log_(2)^(2)x-log_(2)x^(3)+3 respectively,then value of (2M-4m) is-

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

If m = log 20 and n = log 25, find the value of x, so that : 2 log(x - 4) = 2m - n.

Given log x = m + n and log y = m - n, express the value of "log" (10 x)/(y^(2)) in terms of m and n.

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is

Given log x=m+n and log y=m-n then express the value of log((10)/(y^(2))) in terms of m and n