Home
Class 12
MATHS
Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)...

Prove that: `2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)`

Text Solution

AI Generated Solution

To prove that \( 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{31}{17}\right) \), we will use the formula for the addition of inverse tangent functions. ### Step 1: Use the double angle formula for tangent We know that: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Let \( x = \frac{1}{2} \): ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that: tan^(-1)2/(11)+tan^(-1)7/(24)=tan^(-1)1/2

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

tan^(-1)(n+1)+tan^(-1)(n-1)=tan^(-1)(8/31)

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .