Home
Class 10
MATHS
(2x^2-3x-459)/(x^2+1)>1...

`(2x^2-3x-459)/(x^2+1)>1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 1/2) (2x^2-3x+1)/(2x-1) = ?

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

Solve : (2x^2 - 3x+1) (2x^2 + 5x + 1) = 9x^2 .

lim_(x rarr-(1)/(2))(2x^(2)-3x+1)/(2x-1)=

If sqrt((2x^(2)+x+2)/(x^(2)+3x+1))+2"."sqrt((x^(2)+3x+1)/(2x^(2)+x+2))-3=0 , find x.

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

im_(-)>1[(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]