Home
Class 12
MATHS
If f(x+1)+f(x-1)=2f(x)a n df(0),=0, the...

If `f(x+1)+f(x-1)=2f(x)a n df(0),=0,` then `f(n),n in N ,` is `nf(1)` (b) `{f(1)}^n` (c)`0` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+1)+f(x-1)=2f(x) and f(0)=0, then find f(n),n in N , is

If (x+1)+f(x-1)=2f(x)andf(0),=0 then f(n),n in N, is nf(1)(b){f(1)}^(n)(c)0 (d) none of these

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2

If f(x)=m x+ca n df(0)=f^(prime)(0)=1. What is f(2)?

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1), then f or x>0,y>0,f(xy) is equal to : f(x)f(y) (b) f(x)+f(y)f(x)-f(y)(d) none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these