Home
Class 12
MATHS
[f(x)=int(0)^(x)ln((1-t)/(1+t))dt rArr],...

[f(x)=int_(0)^(x)ln((1-t)/(1+t))dt rArr],[" 1) "f(x)" is an even function "],[" 3) "f(x)" is neither even nor odd "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and g(x)=f'(x) is an even function , then f(x) is an odd function.

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0) a. an even function b. an odd function c. neither even nor odd function d. can't say

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to