Home
Class 11
MATHS
if e^(-y)y=x then prove that (dy)/(dx)=y...

if `e^(-y)y=x` then prove that `(dy)/(dx)=y/(x(1-y))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .