Home
Class 9
MATHS
If a and b are positive natural numbers ...

If a and b are positive natural numbers `(sqrta+sqrtb)(sqrta-sqrtb) = a-b`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are positive natural numbers (sqrt(a)+sqrt(b))(sqrt(c)+sqrt(d))=sqrt(ac)+sqrt(ad)+sqrt(bc)+sqrt(bd)

(sqrta + sqrtb)^2 = ?

If a and b are positive natural numbers a^((1)/(n))xx b^((1)/(n))=(ab)^((1)/(n))

(a + b)(sqrta + sqrtb ) (sqrta - sqrtb)= "________"

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

A positive interber is a natural number also.

If a,b and c are three natural numbers in ascending order, then

If a, b and c are three natural numbers in ascending order, then

if a,b x,y are positive natural number such that (1)/(x)+(1)/(y)=1 then (a^(x))/(x)+(a^(y))/(y)=

Statement-1: If a, b are positive real numbers such that a^(3)+b^(3)=16 , then a+ble4. Statement-2: If a, b are positive real numbers and ngt1 , then (a^(n)+b^(n))/(2)ge((a+b)/(2))^(n)