Home
Class 12
MATHS
lim(x to 0) ("sin" (nx)((a - n)nx - tan...

`lim_(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0` when n is a non-zero positive integer,then a equal to ________

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to

lim_(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0 , where n is non-zero positive integer, tehn a is equal to :

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

If lim_(x rarr 0)(((a-n)nx-tanx)sinnx)/x^2=0 , where n is non zero real number, then a is equal to:

lim_(x to 0)({(2-n)nx - tan x}sin nx)/(x^(2))=0 , then the natural number n is