Home
Class 9
MATHS
Prove that : 1/(3-sqrt8) - 1/(sqrt8-sqrt...

Prove that : `1/(3-sqrt8) - 1/(sqrt8-sqrt7)+1/sqrt7-sqrt6)-1/(sqrt6-sqrt5)+1/(sqrt5-2) = 5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6

1/(sqrt7+sqrt6-sqrt13)=

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-