Home
Class 9
MATHS
Important Identity - (a-b)(a+b) = a^2 - ...

Important Identity - `(a-b)(a+b) = a^2 - b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Some Important Identities - (i) (a+b)^(2)=a62+2ab+b^(2)( ii) (a-b)^(2)=a^(2)-2ab+b^(2)

Important Identity -(a^(3)+b^(3)+c^(3)-3abc)=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Important Identitiy (x+a)(x+b)=x^(2)+(a+b)x+ab

Usting the identity (a+ b)^(2) = (a^(2) + 2ab +b^(2)), evaluate: (609)^(2) (725)^(2) (491)^(2) (289)^(2)

Find the squares of the following numbers using the identity (a-b)^(2)=a^(2)-2ab+b^(2)491 (ii) 189 (iii) 575

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (a-b) ^(2) - (b-c) ^(2)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 3a ^(2) b ^(3) - 27 a ^(4) b

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (1)/(36) a ^(2) b ^(2) - (16)/(49) b ^(2) c ^(2)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). ( 2p ^(2))/( 25) - 32 q ^(2)