Home
Class 9
MATHS
Prove that : 2a^2+2b^2+2c^2-2ab-2bc-2ac=...

Prove that : `2a^2+2b^2+2c^2-2ab-2bc-2ac= [(a-b)^2+(b-c)^2+(c-a)^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2a^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]

Prove that: 2a^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=(a-b)^(2)+(b-c)^(2)+(c-a)^(2)

Prove that: 2x^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))