Home
Class 12
MATHS
ul(S)*N*sin^(-1)x+sin^(-1)y+sin^(-1)z=pi...

ul(S)*N*sin^(-1)x+sin^(-1)y+sin^(-1)z=piquad " then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

If sin^(-1) x + sin^(-1) y + sin^(-1) z =(3pi)/2 , then : x^100+ y^100 + z^100 -9/(x^101 + y^101 + z^101) is :

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2) , then D=|(x^(N_(1)),y^(N_(2))),(z^(N_(3)),w^(N_(4)))|(N_(1),N_(2),N_(3),N_(4)inN)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then then the value of (x+y+z) is -

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N)